Your browser doesn't support javascript.
loading
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.
Kang, Min-Joo; Kang, Je-Won.
Afiliación
  • Kang MJ; The Department of Electronics Engineering, Ewha W. University, Seoul, Republic of Korea.
  • Kang JW; The Department of Electronics Engineering, Ewha W. University, Seoul, Republic of Korea.
PLoS One ; 11(6): e0155781, 2016.
Article en En | MEDLINE | ID: mdl-27271802
A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Vehículos a Motor / Modelos Teóricos Tipo de estudio: Diagnostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Vehículos a Motor / Modelos Teóricos Tipo de estudio: Diagnostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article