Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice.
Sci Rep
; 6: 29784, 2016 07 13.
Article
en En
| MEDLINE
| ID: mdl-27405580
Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions, resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration, these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals, as evidenced by two visual behavioral tests. Furthermore, the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Diferenciación Celular
/
Retinitis Pigmentosa
/
Ceguera
/
Células Fotorreceptoras de Vertebrados
/
Células Madre Pluripotentes Inducidas
/
Células Madre Embrionarias Humanas
Tipo de estudio:
Guideline
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2016
Tipo del documento:
Article
País de afiliación:
Reino Unido