Relative Skeletal Maturation and Population Ancestry in Nonobese Children and Adolescents.
J Bone Miner Res
; 32(1): 115-124, 2017 01.
Article
en En
| MEDLINE
| ID: mdl-27419386
More rapid skeletal maturation in African-American (AA) children is recognized and generally attributed to an increased prevalence of obesity. The objective of the present study was to evaluate the effects of population ancestry on relative skeletal maturation in healthy, non-obese children and adolescents, accounting for body composition and sexual maturation. To do this, we leveraged a multiethnic, mixed-longitudinal study with annual assessments for up to 7 years (The Bone Mineral Density in Childhood Study and its ancillary cohort) conducted at five US clinical centers. Participants included 1592 children, skeletally immature (45% females, 19% AA) who were aged 5 to 17 years at study entry. The primary outcome measure was relative skeletal maturation as assessed by hand-wrist radiograph. Additional covariates measured included anthropometrics, body composition by dual-energy X-ray absorptiometry (DXA), and Tanner stage of sexual maturation. Using mixed effects longitudinal models, without covariates, advancement in relative skeletal maturation was noted in self-reported AA girls (â¼0.33 years, p < 0.001) and boys (â¼0.43 years, p < 0.001). Boys and girls of all ancestry groups showed independent positive associations of height, lean mass, fat mass, and puberty with relative skeletal maturation. The effect of ancestry was attenuated but persistent after accounting for covariates: for girls, 0.19 years (ancestry by self-report, p = 0.02) or 0.29 years (ancestry by admixture, p = 0.004); and for boys, 0.20 years (ancestry by self-report, p = 0.004), or 0.29 years (ancestry by admixture, p = 0.004). In summary, we conclude that advancement in relative skeletal maturation was associated with AA ancestry in healthy, non-obese children, independent of growth, body composition, and puberty. Further research into the mechanisms underlying this observation may provide insights into the regulation of skeletal maturation. © 2016 American Society for Bone and Mineral Research.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Desarrollo Óseo
/
Grupos Raciales
/
Obesidad
Tipo de estudio:
Diagnostic_studies
/
Observational_studies
/
Risk_factors_studies
Límite:
Adolescent
/
Adult
/
Child
/
Child, preschool
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
J Bone Miner Res
Asunto de la revista:
METABOLISMO
/
ORTOPEDIA
Año:
2017
Tipo del documento:
Article
País de afiliación:
Estados Unidos