Your browser doesn't support javascript.
loading
Frataxin silencing alters microtubule stability in motor neurons: implications for Friedreich's ataxia.
Piermarini, Emanuela; Cartelli, Daniele; Pastore, Anna; Tozzi, Giulia; Compagnucci, Claudia; Giorda, Ezio; D'Amico, Jessica; Petrini, Stefania; Bertini, Enrico; Cappelletti, Graziella; Piemonte, Fiorella.
Afiliación
  • Piermarini E; Unit of Muscular and Neurodegenerative Diseases.
  • Cartelli D; Department of Biosciences.
  • Pastore A; Laboratory of Biochemistry.
  • Tozzi G; Unit of Muscular and Neurodegenerative Diseases.
  • Compagnucci C; Unit of Muscular and Neurodegenerative Diseases.
  • Giorda E; Unit of Flow Cytometry.
  • D'Amico J; Unit of Muscular and Neurodegenerative Diseases.
  • Petrini S; Department of Biosciences.
  • Bertini E; Unit of Muscular and Neurodegenerative Diseases.
  • Cappelletti G; Department of Biosciences.
  • Piemonte F; Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Celoria 26, Milan, Italy.
Hum Mol Genet ; 25(19): 4288-4301, 2016 10 01.
Article en En | MEDLINE | ID: mdl-27516386
To elucidate the pathogenesis of axonopathy in Friedreich's Ataxia (FRDA), a neurodegenerative disease characterized by axonal retraction, we analyzed the microtubule (MT) dynamics in an in vitro frataxin-silenced neuronal model (shFxn). A typical feature of MTs is their "dynamic instability", in which they undergo phases of growth (polymerization) and shrinkage (depolymerization). MTs play a fundamental role in the physiology of neurons and every perturbation of their dynamicity is highly detrimental for neuronal functions. The aim of this study is to determine whether MTs are S-glutathionylated in shFxn and if the glutathionylation triggers MT dysfunction. We hypothesize that oxidative stress, determined by high GSSG levels, induces axonal retraction by interfering with MT dynamics. We propose a mechanism of the axonopathy in FRDA where GSSG overload and MT de-polymerization are strictly interconnected. Indeed, using a frataxin-silenced neuronal model we show a significant reduction of neurites extension, a shift of tubulin toward the unpolymerized fraction and a consistent increase of glutathione bound to the cytoskeleton. The live cell imaging approach further reveals a significant decrease in MT growth lifetime due to frataxin silencing, which is consistent with the MT destabilization. The in vitro antioxidant treatments trigger the axonal re-growth and the increase in stable MTs in shFxn, thus contributing to identify new neuronal targets of oxidation in this disease and providing a novel approach for antioxidant therapies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Axones / Ataxia de Friedreich / Neuritas / Proteínas de Unión a Hierro / Neuronas Motoras Límite: Animals / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Axones / Ataxia de Friedreich / Neuritas / Proteínas de Unión a Hierro / Neuronas Motoras Límite: Animals / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2016 Tipo del documento: Article