Your browser doesn't support javascript.
loading
Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution.
Bartsch, Tobias F; Kochanczyk, Martin D; Lissek, Emanuel N; Lange, Janina R; Florin, Ernst-Ludwig.
Afiliación
  • Bartsch TF; Center for Nonlinear Dynamics, Physics Department, The University of Texas at Austin, 2515 Speedway, Austin, Texas 78712, USA.
  • Kochanczyk MD; Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
  • Lissek EN; Center for Nonlinear Dynamics, Physics Department, The University of Texas at Austin, 2515 Speedway, Austin, Texas 78712, USA.
  • Lange JR; Center for Nonlinear Dynamics, Physics Department, The University of Texas at Austin, 2515 Speedway, Austin, Texas 78712, USA.
  • Florin EL; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany.
Nat Commun ; 7: 12729, 2016 09 06.
Article en En | MEDLINE | ID: mdl-27596919
ABSTRACT
Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos