Your browser doesn't support javascript.
loading
Single-stranded nucleic acid elasticity arises from internal electrostatic tension.
Jacobson, David R; McIntosh, Dustin B; Stevens, Mark J; Rubinstein, Michael; Saleh, Omar A.
Afiliación
  • Jacobson DR; Department of Physics, University of California, Santa Barbara, CA 93106.
  • McIntosh DB; Department of Physics, University of California, Santa Barbara, CA 93106.
  • Stevens MJ; Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185.
  • Rubinstein M; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599.
  • Saleh OA; Materials Department and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93016 saleh@engineering.ucsb.edu.
Proc Natl Acad Sci U S A ; 114(20): 5095-5100, 2017 05 16.
Article en En | MEDLINE | ID: mdl-28461493
ABSTRACT
Understanding of the conformational ensemble of flexible polyelectrolytes, such as single-stranded nucleic acids (ssNAs), is complicated by the interplay of chain backbone entropy and salt-dependent electrostatic repulsions. Molecular elasticity measurements are sensitive probes of the statistical conformation of polymers and have elucidated ssNA conformation at low force, where electrostatic repulsion leads to a strong excluded volume effect, and at high force, where details of the backbone structure become important. Here, we report measurements of ssDNA and ssRNA elasticity in the intermediate-force regime, corresponding to 5- to 100-pN forces and 50-85% extension. These data are explained by a modified wormlike chain model incorporating an internal electrostatic tension. Fits to the elastic data show that the internal tension decreases with salt, from [Formula see text]5 pN under 5 mM ionic strength to near zero at 1 M. This decrease is quantitatively described by an analytical model of electrostatic screening that ascribes to the polymer an effective charge density that is independent of force and salt. Our results thus connect microscopic chain physics to elasticity and structure at intermediate scales and provide a framework for understanding flexible polyelectrolyte elasticity across a broad range of relative extensions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Poli U / ADN de Cadena Simple / Electricidad Estática / Modelos Químicos Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Poli U / ADN de Cadena Simple / Electricidad Estática / Modelos Químicos Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article