Your browser doesn't support javascript.
loading
Annotating pathogenic non-coding variants in genic regions.
Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B.
Afiliación
  • Gelfman S; Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA. sahar.gelfman@columbia.edu.
  • Wang Q; Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA. sahar.gelfman@columbia.edu.
  • McSweeney KM; Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.
  • Ren Z; Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA.
  • La Carpia F; Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.
  • Halvorsen M; Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA.
  • Schoch K; Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.
  • Ratzon F; Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA.
  • Heinzen EL; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, 10032, USA.
  • Boland MJ; Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.
  • Petrovski S; Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA.
  • Goldstein DB; Department of Pediatrics, Duke University Health System, Durham, North Carolina, 27705, USA.
Nat Commun ; 8(1): 236, 2017 08 09.
Article en En | MEDLINE | ID: mdl-28794409
Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Epilepsia Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Epilepsia Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos