Violation of Ohm's law in a Weyl metal.
Nat Mater
; 16(11): 1096-1099, 2017 11.
Article
en En
| MEDLINE
| ID: mdl-28805826
Ohm's law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm's law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm's law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I-V characteristics in Bi0.96Sb0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (Eâ¥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity, which completely describes our experimental results. As a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nat Mater
Asunto de la revista:
CIENCIA
/
QUIMICA
Año:
2017
Tipo del documento:
Article