Your browser doesn't support javascript.
loading
Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient.
Ravichandar, Jayamary Divya; Bower, Adam G; Julius, A Agung; Collins, Cynthia H.
Afiliación
  • Ravichandar JD; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States of America.
  • Bower AG; Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York, 12180, United States of America.
  • Julius AA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States of America.
  • Collins CH; Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York, 12180, United States of America.
Sci Rep ; 7(1): 8959, 2017 08 21.
Article en En | MEDLINE | ID: mdl-28827562
Manipulation of cellular motility using a target signal can facilitate the development of biosensors or microbe-powered biorobots. Here, we engineered signal-dependent motility in Escherichia coli via the transcriptional control of a key motility gene. Without manipulating chemotaxis, signal-dependent switching of motility, either on or off, led to population-level directional movement of cells up or down a signal gradient. We developed a mathematical model that captures the behaviour of the cells, enables identification of key parameters controlling system behaviour, and facilitates predictive-design of motility-based pattern formation. We demonstrated that motility of the receiver strains could be controlled by a sender strain generating a signal gradient. The modular quorum sensing-dependent architecture for interfacing different senders with receivers enabled a broad range of systems-level behaviours. The directional control of motility, especially combined with the potential to incorporate tuneable sensors and more complex sensing-logic, may lead to tools for novel biosensing and targeted-delivery applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulación Bacteriana de la Expresión Génica / Escherichia coli / Locomoción Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulación Bacteriana de la Expresión Génica / Escherichia coli / Locomoción Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos