Your browser doesn't support javascript.
loading
Massively parallel de novo protein design for targeted therapeutics.
Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J; Hicks, Derrick R; Vergara, Renan; Murapa, Patience; Bernard, Steffen M; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T; Koday, Merika T; Jenkins, Cody M; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M; Fernández-Velasco, D Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A; Fuller, Deborah H; Baker, David.
Afiliación
  • Chevalier A; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Silva DA; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.
  • Rocklin GJ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Hicks DR; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.
  • Vergara R; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Murapa P; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.
  • Bernard SM; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Zhang L; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.
  • Lam KH; Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA.
  • Yao G; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Bahl CD; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.
  • Miyashita SI; Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico.
  • Goreshnik I; Department of Microbiology, University of Washington, Seattle, Washington 98109, USA.
  • Fuller JT; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
  • Koday MT; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
  • Jenkins CM; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Colvin T; Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
  • Carter L; Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
  • Bohn A; Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
  • Bryan CM; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Fernández-Velasco DA; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.
  • Stewart L; Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.
  • Dong M; Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA.
  • Huang X; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
  • Jin R; Department of Microbiology, University of Washington, Seattle, Washington 98109, USA.
  • Wilson IA; Department of Microbiology, University of Washington, Seattle, Washington 98109, USA.
  • Fuller DH; Virvio Inc., Seattle, Washington 98195, USA.
  • Baker D; Department of Microbiology, University of Washington, Seattle, Washington 98109, USA.
Nature ; 550(7674): 74-79, 2017 10 05.
Article en En | MEDLINE | ID: mdl-28953867
ABSTRACT
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diseño de Fármacos / Ingeniería de Proteínas / Proteínas / Gripe Humana / Terapia Molecular Dirigida Límite: Humans Idioma: En Revista: Nature Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diseño de Fármacos / Ingeniería de Proteínas / Proteínas / Gripe Humana / Terapia Molecular Dirigida Límite: Humans Idioma: En Revista: Nature Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos