Your browser doesn't support javascript.
loading
Case Report: Application of whole exome sequencing for accurate diagnosis of rare syndromes of mineralocorticoid excess.
Narayanan, Ranjit; Karuthedath Vellarikkal, Shamsudheen; Jayarajan, Rijith; Verma, Ankit; Dixit, Vishal; Scaria, Vinod; Sivasubbu, Sridhar.
Afiliación
  • Narayanan R; Department of Nephrology, KMCT Medical College Hospital, Kerala, India.
  • Karuthedath Vellarikkal S; Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB South Campus, Delhi, India.
  • Jayarajan R; Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  • Verma A; Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  • Dixit V; Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  • Scaria V; Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  • Sivasubbu S; Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB South Campus, Delhi, India.
F1000Res ; 5: 1592, 2016.
Article en En | MEDLINE | ID: mdl-29067160
Syndromes of mineralocorticoid excess (SME) are closely related clinical manifestations occurring within a specific set of diseases. Overlapping clinical manifestations of such syndromes often create a dilemma in accurate diagnosis, which is crucial for disease surveillance and management especially in rare genetic disorders. Here we demonstrate the use of whole exome sequencing (WES) for accurate diagnosis of rare SME and report that p.R337C variation in the HSD11B2 gene causes progressive apparent mineralocorticoid excess (AME) syndrome in a South Indian family of Mappila origin.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: F1000Res Año: 2016 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: F1000Res Año: 2016 Tipo del documento: Article País de afiliación: India