Your browser doesn't support javascript.
loading
Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach.
Akberdin, Ilya R; Thompson, Merlin; Hamilton, Richard; Desai, Nalini; Alexander, Danny; Henard, Calvin A; Guarnieri, Michael T; Kalyuzhnaya, Marina G.
Afiliación
  • Akberdin IR; Biology Department and Viral Information Institute, San Diego State University, San Diego, USA.
  • Thompson M; Institute of Cytology and Genetics and Novosibirsk State University, Novosibirsk, Russia.
  • Hamilton R; Biology Department and Viral Information Institute, San Diego State University, San Diego, USA.
  • Desai N; Biology Department and Viral Information Institute, San Diego State University, San Diego, USA.
  • Alexander D; Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA.
  • Henard CA; Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA.
  • Guarnieri MT; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, MS 3323, Golden, CO, 80401, United States.
  • Kalyuzhnaya MG; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, MS 3323, Golden, CO, 80401, United States.
Sci Rep ; 8(1): 2512, 2018 02 06.
Article en En | MEDLINE | ID: mdl-29410419
ABSTRACT
Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Methylococcaceae / Metanol / Metano Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Methylococcaceae / Metanol / Metano Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos