Your browser doesn't support javascript.
loading
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien.
Afiliación
  • Lacroix B; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France. Electronic address: benjamin.lacroix@ijm.fr.
  • Letort G; Institut Curie, Mines Paris Tech, Inserm, U900, PSL Research University, 75005 Paris, France.
  • Pitayu L; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
  • Sallé J; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
  • Stefanutti M; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
  • Maton G; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
  • Ladouceur AM; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
  • Canman JC; Columbia University Medical Center, Department of Pathology and Cell Biology, New York, NY 10032, USA.
  • Maddox PS; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
  • Maddox AS; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
  • Minc N; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
  • Nédélec F; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. Electronic address: nedelec@embl.de.
  • Dumont J; Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France. Electronic address: julien.dumont@ijm.fr.
Dev Cell ; 45(4): 496-511.e6, 2018 05 21.
Article en En | MEDLINE | ID: mdl-29787710
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Paracentrotus / Tamaño de la Célula / Embrión no Mamífero / Microtúbulos / Huso Acromático Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Dev Cell Asunto de la revista: EMBRIOLOGIA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Paracentrotus / Tamaño de la Célula / Embrión no Mamífero / Microtúbulos / Huso Acromático Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Dev Cell Asunto de la revista: EMBRIOLOGIA Año: 2018 Tipo del documento: Article