Your browser doesn't support javascript.
loading
Visualization of Water-Induced Surface Segregation of Polarons on Rutile TiO2(110).
Yim, Chi M; Chen, Ji; Zhang, Yu; Shaw, Bobbie-Jean; Pang, Chi L; Grinter, David C; Bluhm, Hendrik; Salmeron, Miquel; Muryn, Christopher A; Michaelides, Angelos; Thornton, Geoff.
Afiliación
  • Yim CM; Department of Chemistry and London Centre for Nanotechnology , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.
  • Chen J; Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre , University College London , London WC1E 6BT , United Kingdom.
  • Zhang Y; Department of Chemistry and London Centre for Nanotechnology , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.
  • Shaw BJ; Department of Chemistry and London Centre for Nanotechnology , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.
  • Pang CL; Department of Chemistry and London Centre for Nanotechnology , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.
  • Grinter DC; Department of Chemistry and London Centre for Nanotechnology , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.
  • Bluhm H; Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
  • Salmeron M; Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
  • Muryn CA; Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
  • Michaelides A; School of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom.
  • Thornton G; Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre , University College London , London WC1E 6BT , United Kingdom.
J Phys Chem Lett ; 9(17): 4865-4871, 2018 Sep 06.
Article en En | MEDLINE | ID: mdl-30081626
ABSTRACT
Water-oxide surfaces are ubiquitous in nature and of widespread importance to phenomena like corrosion as well as contemporary industrial challenges such as energy production through water splitting. So far, a reasonably robust understanding of the structure of such interfaces under certain conditions has been obtained. Considerably less is known about how overlayer water modifies the inherent reactivity of oxide surfaces. Here we address this issue experimentally for rutile TiO2(110) using scanning tunneling microscopy and photoemission, with complementary density functional theory calculations. Through detailed studies of adsorbed water nanoclusters and continuous water overlayers, we determine that excess electrons in TiO2 are attracted to the top surface layer by water molecules. Measurements on methanol show similar behavior. Our results suggest that adsorbate-induced surface segregation of polarons could be a general phenomenon for technologically relevant oxide materials, with consequences for surface chemistry and the associated catalytic activity.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido