Your browser doesn't support javascript.
loading
Multilayered gene control drives timely exit from the stem cell state in uncommitted progenitors during Drosophila asymmetric neural stem cell division.
Komori, Hideyuki; Golden, Krista L; Kobayashi, Taeko; Kageyama, Ryoichiro; Lee, Cheng-Yu.
Afiliación
  • Komori H; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
  • Golden KL; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
  • Kobayashi T; Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
  • Kageyama R; Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
  • Lee CY; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
Genes Dev ; 32(23-24): 1550-1561, 2018 12 01.
Article en En | MEDLINE | ID: mdl-30463902
ABSTRACT
Self-renewal genes maintain stem cells in an undifferentiated state by preventing the commitment to differentiate. Robust inactivation of self-renewal gene activity following asymmetric stem cell division allows uncommitted stem cell progeny to exit from an undifferentiated state and initiate the commitment to differentiate. Nonetheless, how self-renewal gene activity at mRNA and protein levels becomes synchronously terminated in uncommitted stem cell progeny is unclear. We demonstrate that a multilayered gene regulation system terminates self-renewal gene activity at all levels in uncommitted stem cell progeny in the fly neural stem cell lineage. We found that the RNA-binding protein Brain tumor (Brat) targets the transcripts of a self-renewal gene, deadpan (dpn), for decay by recruiting the deadenylation machinery to the 3' untranslated region (UTR). Furthermore, we identified a nuclear protein, Insensible, that complements Cullin-mediated proteolysis to robustly inactivate Dpn activity by limiting the level of active Dpn through protein sequestration. The synergy between post-transcriptional and transcriptional control of self-renewal genes drives timely exit from the stem cell state in uncommitted progenitors. Our proposed multilayered gene regulation system could be broadly applicable to the control of exit from stemness in all stem cell lineages.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: División Celular / Regulación del Desarrollo de la Expresión Génica / Drosophila melanogaster / Células-Madre Neurales / Autorrenovación de las Células Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Genes Dev Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: División Celular / Regulación del Desarrollo de la Expresión Génica / Drosophila melanogaster / Células-Madre Neurales / Autorrenovación de las Células Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Genes Dev Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos