Your browser doesn't support javascript.
loading
A photoresponsive molecularly imprinted polymer with rapid visible-light-induced photoswitching for 4-ethylphenol in red wine.
Gong, Cheng-Bin; Yang, Yue-Hong; Chen, Mei-Jun; Liu, Lan-Tao; Liu, Song; Wei, Yu-Bo; Tang, Qian.
Afiliación
  • Gong CB; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. Electronic address: gongcbtq@swu.edu.cn.
  • Yang YH; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
  • Chen MJ; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
  • Liu LT; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
  • Liu S; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
  • Wei YB; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
  • Tang Q; The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
Mater Sci Eng C Mater Biol Appl ; 96: 661-668, 2019 Mar.
Article en En | MEDLINE | ID: mdl-30606579
ABSTRACT
The trans to cis isomerization of the azobenzene chromophore in most azobenzene-based photoresponsive molecularly imprinted polymers (MIPs) is initiated by UV irradiation. This limits the application of these materials in cases where UV light toxicity is an issue, such as in biological systems, food monitoring, and drug delivery. Herein we report a tetra-ortho-methyl substituted azobenzene, (4-[(4-methacryloyloxy)-2,6-dimethyl phenylazo]-3,5-dimethyl benzenesulfonic acid (MADPADSA). The photoswitching of MADPADSA could be induced by visible-light irradiation (550 nm for trans to cis and 475 nm for cis to trans) in 4-hydroxyethylpiperazineethanesulfonic acid (HEPES) buffer-ethanol (41, v/v) at pH 7.0, however, the photoisomerization was slow. With the use of MADPADSA as a functional monomer, NaYF4Yb3+,Er3+ as a substrate, 4-ethylphenol (4-EP) as a template, a novel photoresponsive surface molecularly imprinted polymer NaYF4Yb3+,Er3+@MIP was obtained. The NaYF4Yb3+,Er3+@MIP displayed rapid visible-light-induced photoswitching. The NaYF4Yb3+,Er3+ substrate could efficiently increase the trans to cis isomerization rate of the photoresponsive MIP on its surface, which was faster than that of the corresponding azobenzene monomer MADPADSA. Possible reasons for this effect were investigated by fluorescence spectroscopy. NaYF4Yb3+,Er3+@MIP displayed good specificity toward 4-EP with a specific binding constant (Kd) of 3.67 × 10-6 mol L-1 and an apparent maximum adsorption capacity (Qmax) of 10.73 µmol g-1, respectively. NaYF4Yb3+,Er3+@MIP was applied to determine the concentration of 4-EP in red wine with good efficiency and a limit of detection lower than the value that could cause an unpleasant off-flavor.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenoles / Rayos Ultravioleta / Vino / Procesos Fotoquímicos Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenoles / Rayos Ultravioleta / Vino / Procesos Fotoquímicos Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2019 Tipo del documento: Article