Your browser doesn't support javascript.
loading
Principal Component Analysis of the Biomechanical Factors Associated With Performance During Cutting.
Welch, Neil; Richter, Chris; Franklyn-Miller, Andy; Moran, Kieran.
Afiliación
  • Welch N; Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland.
  • Richter C; School of Health and Human Performance, Dublin City University, Dublin, Ireland.
  • Franklyn-Miller A; INSIGHT Center for Data Analytics, Dublin, Ireland; and.
  • Moran K; Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland.
J Strength Cond Res ; 35(6): 1715-1723, 2021 Jun 01.
Article en En | MEDLINE | ID: mdl-30664108
ABSTRACT: Welch, N, Richter, C, Franklyn-Miller, A, and Moran, K. Principal component analysis of the biomechanical factors associated with performance during cutting. J Strength Cond Res 35(6): 1715-1723, 2021-The main aim of the current study was to investigate the relationship between kinematic variables in cutting and performance outcome across different angled cuts through the use of principal component analysis and permutation testing. Twenty-five male intercounty Gaelic football players (23.5 ± 4.2 years, 183 ± 6 cm, and 83 ± 6.9 kg) participated in the study. Three-dimensional motion capture was used to perform a biomechanical analysis of 110 and 45° cutting tasks. Principal component analysis and permutation testing revealed one principal component within the 45° cut (r = 0.26) and 2 principal components within the 110° (r = 0.66 and 0.27) cut that consistently correlated with performance outcome. Within the 45° cut, the identified principal component was interpreted as relating to performance cues of maintaining a low center of mass during the concentric phase, using a shorter ground contact time, resisting a reduction in lateral center of mass to ankle and knee distance in the eccentric phase, and using faster and larger extensions of the hip and knee. Within the 110° cut, the first identified principal component was interpreted as relating to performance cues of maintaining a low center of mass during the concentric phase, using a shorter ground contact time, resisting a reduction in lateral center of mass to ankle and knee distance in the eccentric phase, and resisting hip flexion then using hip extension. The second principal component was interpreted as relating to a performance cue of leaning in the direction of the cut.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Rendimiento Atlético / Movimiento Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans / Male Idioma: En Revista: J Strength Cond Res Asunto de la revista: FISIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Irlanda

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Rendimiento Atlético / Movimiento Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans / Male Idioma: En Revista: J Strength Cond Res Asunto de la revista: FISIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Irlanda