Your browser doesn't support javascript.
loading
Neural crest streaming as an emergent property of tissue interactions during morphogenesis.
Szabó, András; Theveneau, Eric; Turan, Melissa; Mayor, Roberto.
Afiliación
  • Szabó A; Research Department of Cell and Developmental Biology, University College London, London, United Kingdom.
  • Theveneau E; Research Department of Cell and Developmental Biology, University College London, London, United Kingdom.
  • Turan M; Research Department of Cell and Developmental Biology, University College London, London, United Kingdom.
  • Mayor R; Research Department of Cell and Developmental Biology, University College London, London, United Kingdom.
PLoS Comput Biol ; 15(4): e1007002, 2019 04.
Article en En | MEDLINE | ID: mdl-31009457
ABSTRACT
A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Morfogénesis / Cresta Neural Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Morfogénesis / Cresta Neural Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido