Your browser doesn't support javascript.
loading
QCMAP: An Interactive Web-Tool for Performance Diagnosis and Prediction of LC-MS Systems.
Kim, Taiyun; Chen, Irene Rui; Parker, Benjamin L; Humphrey, Sean J; Crossett, Ben; Cordwell, Stuart J; Yang, Pengyi; Yang, Jean Yee Hwa.
Afiliación
  • Kim T; School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia.
  • Chen IR; Judith and David Coffey Life Lab, Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.
  • Parker BL; School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia.
  • Humphrey SJ; Judith and David Coffey Life Lab, Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.
  • Crossett B; School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
  • Cordwell SJ; School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
  • Yang P; Sydney Mass Spectrometry, University of Sydney, NSW, 2006, Australia.
  • Yang JYH; School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
Proteomics ; 19(13): e1900068, 2019 07.
Article en En | MEDLINE | ID: mdl-31099962
The increasing role played by liquid chromatography-mass spectrometry (LC-MS)-based proteomics in biological discovery has led to a growing need for quality control (QC) on the LC-MS systems. While numerous quality control tools have been developed to track the performance of LC-MS systems based on a pre-defined set of performance factors (e.g., mass error, retention time), the precise influence and contribution of the performance factors and their generalization property to different biological samples are not as well characterized. Here, a web-based application (QCMAP) is developed for interactive diagnosis and prediction of the performance of LC-MS systems across different biological sample types. Leveraging on a standardized HeLa cell sample run as QC within a multi-user facility, predictive models are trained on a panel of commonly used performance factors to pinpoint the precise conditions to a (un)satisfactory performance in three LC-MS systems. It is demonstrated that the learned model can be applied to predict LC-MS system performance for brain samples generated from an independent study. By compiling these predictive models into our web-application, QCMAP allows users to benchmark the performance of their LC-MS systems using their own samples and identify key factors for instrument optimization. QCMAP is freely available from: http://shiny.maths.usyd.edu.au/QCMAP/.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Control de Calidad / Cromatografía Liquida / Proteómica / Espectrometría de Masas en Tándem Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Proteomics Asunto de la revista: BIOQUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Control de Calidad / Cromatografía Liquida / Proteómica / Espectrometría de Masas en Tándem Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Proteomics Asunto de la revista: BIOQUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Australia