Multi-institutional Clinical Tool for Predicting High-risk Lesions on 3Tesla Multiparametric Prostate Magnetic Resonance Imaging.
Eur Urol Oncol
; 2(3): 257-264, 2019 05.
Article
en En
| MEDLINE
| ID: mdl-31200839
BACKGROUND: Multiparametric magnetic resonance imaging (mpMRI) for prostate cancer detection without careful patient selection may lead to excessive resource utilization and costs. OBJECTIVE: To develop and validate a clinical tool for predicting the presence of high-risk lesions on mpMRI. DESIGN, SETTING, AND PARTICIPANTS: Four tertiary care centers were included in this retrospective and prospective study (BiRCH Study Collaborative). Statistical models were generated using 1269 biopsy-naive, prior negative biopsy, and active surveillance patients who underwent mpMRI. Using age, prostate-specific antigen, and prostate volume, a support vector machine model was developed for predicting the probability of harboring Prostate Imaging Reporting and Data System 4 or 5 lesions. The accuracy of future predictions was then prospectively assessed in 214 consecutive patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Receiver operating characteristic, calibration, and decision curves were generated to assess model performance. RESULTS AND LIMITATIONS: For biopsy-naïve and prior negative biopsy patients (n=811), the area under the curve (AUC) was 0.730 on internal validation. Excellent calibration and high net clinical benefit were observed. On prospective external validation at two separate institutions (n=88 and n=126), the machine learning model discriminated with AUCs of 0.740 and 0.744, respectively. The final model was developed on the Microsoft Azure Machine Learning platform (birch.azurewebsites.net). This model requires a prostate volume measurement as input. CONCLUSIONS: In patients who are naïve to biopsy or those with a prior negative biopsy, BiRCH models can be used to select patients for mpMRI. PATIENT SUMMARY: In this multicenter study, we developed and prospectively validated a calculator that can be used to predict prostate magnetic resonance imaging (MRI) results using patient age, prostate-specific antigen, and prostate volume as input. This tool can aid health care professionals and patients to make an informed decision regarding whether to get an MRI.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Próstata
/
Técnicas de Apoyo para la Decisión
/
Imágenes de Resonancia Magnética Multiparamétrica
Tipo de estudio:
Etiology_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
/
Screening_studies
Límite:
Aged
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Eur Urol Oncol
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos