Transition-Metal Chemistry of Alkaline-Earth Elements: The Trisbenzene Complexes M(Bz)3 (M=Sr, Ba).
Angew Chem Int Ed Engl
; 58(48): 17365-17374, 2019 Nov 25.
Article
en En
| MEDLINE
| ID: mdl-31498532
We report the synthesis and spectroscopic identification of the trisbenzene complexes of strontium and barium M(Bz)3 (M=Sr, Ba) in low-temperature Ne matrix. Both complexes are characterized by a D3 symmetric structure involving three equivalent η6 -bound benzene ligands and a closed-shell singlet electronic ground state. The analysis of the electronic structure shows that the complexes exhibit metal-ligand bonds that are typical for transition metal compounds. The chemical bonds can be explained in terms of weak donation from the π MOs of benzene ligands into the vacant (n-1)d AOs of M and strong backdonation from the occupied (n-1)d AO of M into vacant π* MOs of benzene ligands. The metals in these 20-electron complexes have 18 effective valence electrons, and, thus, fulfill the 18-electron rule if only the metal-ligand bonding electrons are counted. The results suggest that the heavier alkaline earth atoms exhibit the full bonding scenario of transition metals.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2019
Tipo del documento:
Article
País de afiliación:
China