Your browser doesn't support javascript.
loading
Automated Extraction and Visualization of Protein-Protein Interaction Networks and Beyond: A Text-Mining Protocol.
Raja, Kalpana; Natarajan, Jeyakumar; Kuusisto, Finn; Steill, John; Ross, Ian; Thomson, James; Stewart, Ron.
Afiliación
  • Raja K; Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
  • Natarajan J; Data Mining and Text Mining Laboratory, Department of Bioinformatics, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
  • Kuusisto F; Data Mining and Text Mining Laboratory, Department of Bioinformatics, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
  • Steill J; Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
  • Ross I; Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
  • Thomson J; Computer Sciences Department, Center for High Throughput Computing, University of Wisconsin, Madison, WI, USA.
  • Stewart R; Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
Methods Mol Biol ; 2074: 13-34, 2020.
Article en En | MEDLINE | ID: mdl-31583627
Proteins perform their functions by interacting with other proteins. Protein-protein interaction (PPI) is critical for understanding the functions of individual proteins, the mechanisms of biological processes, and the disease mechanisms. High-throughput experiments accumulated a huge number of PPIs in PubMed articles, and their extraction is possible only through automated approaches. The standard text-mining protocol includes four major tasks, namely, recognizing protein mentions, normalizing protein names and aliases to unique identifiers such as gene symbol, extracting PPIs, and visualizing the PPI network using Cytoscape or other visualization tools. Each task is challenging and has been revised over several years to improve the performance. We present a protocol based on our hybrid approaches and show the possibility of presenting each task as an independent web-based tool, NAGGNER for protein name recognition, ProNormz for protein name normalization, PPInterFinder for PPI extraction, and HPIminer for PPI network visualization. The protocol is specific to human but can be generalized to other organisms. We include KinderMiner, our most recent text-mining tool that predicts PPIs by retrieving significant co-occurring protein pairs. The algorithm is simple, easy to implement, and generalizable to other biological challenges.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Minería de Datos Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Minería de Datos Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos