Your browser doesn't support javascript.
loading
Observation of a transition between dynamical phases in a quantum degenerate Fermi gas.
Smale, Scott; He, Peiru; Olsen, Ben A; Jackson, Kenneth G; Sharum, Haille; Trotzky, Stefan; Marino, Jamir; Rey, Ana Maria; Thywissen, Joseph H.
Afiliación
  • Smale S; Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada.
  • He P; JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA.
  • Olsen BA; Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA.
  • Jackson KG; Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada.
  • Sharum H; Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada.
  • Trotzky S; Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada.
  • Marino J; Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 1A7, Canada.
  • Rey AM; JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA.
  • Thywissen JH; Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA.
Sci Adv ; 5(8): eaax1568, 2019 08.
Article en En | MEDLINE | ID: mdl-31667348
ABSTRACT
A proposed paradigm for out-of-equilibrium quantum systems is that an analog of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dynamical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived because of an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a nonequilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Canadá