Your browser doesn't support javascript.
loading
Pollinator Behavior Drives Sexual Specializations in the Hermaphrodite Flowers of a Heterodichogamous Tree.
Wajnberg, Eric; Tel-Zur, Noemi; Shapira, Idan; Lebber, Yochai; Lev-Yadun, Simcha; Zurgil, Udi; Reisman-Berman, Orna; Keasar, Tamar.
Afiliación
  • Wajnberg E; INRA Sophia Antipolis and: INRIA, Sophia Antipolis, Projet Hephaistos, France.
  • Tel-Zur N; French Associates Institutes for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boqer, Israel.
  • Shapira I; Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel.
  • Lebber Y; Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel.
  • Lev-Yadun S; Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel.
  • Zurgil U; French Associates Institutes for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boqer, Israel.
  • Reisman-Berman O; French Associates Institutes for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boqer, Israel.
  • Keasar T; Department of Natural and Life Sciences, Open University of Israel, Ra'anana, Israel.
Front Plant Sci ; 10: 1315, 2019.
Article en En | MEDLINE | ID: mdl-31681393
Dioecy, the specialization of individuals into either male-only or female-only sexual function, has multiple evolutionary origins in plants. One proposed ancestral mating system is heterodichogamy, two morphs of cross-fertilizing hermaphrodite flowers that differ in their timing of flowering. Previous research suggested that small specializations in these morphs' functional genders could facilitate their evolution into separate sexes. We tested the possible role of pollinators in driving such specializations. Ziziphus spina-christi is an insect-pollinated heterodichogamous tree with self-incompatible flowers and two sympatric flowering morphs. We compared the flower development patterns, floral food rewards, pollinator visits, and fruit production between the two morphs. Male-phase flowers of Z. spina-christi's "Early" and "Late" morphs open before dawn and around noon, respectively, and transition into female-phase 7-8 h later. Flowers of both morphs contain similar nectar and pollen rewards, and receive visits by flies (their ancestral pollinators) at similar rates, mostly during the morning. Consequently, the Early morph functions largely as pollen donor. The Late morph, functioning as female in the morning, produces more fruit. We developed an evolutionary probabilistic model, inspired by Z. spina-christi's reproductive system, to test whether pollinator visit patterns could potentially play a role in an evolutionary transition from heterodichogamy towards dioecy. The model predicts that reproductive incompatibility within flowering morphs promotes their evolution into different sexes. Furthermore, the pollinators' morning activity drives the Early and Late morphs' specialization into male and female functions, respectively. Thus, while not required for transitioning from heterodichogamy to dioecy, pollinator-mediated selection is expected to influence which sexual specialization evolves in each of the flowering morphs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Plant Sci Año: 2019 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Plant Sci Año: 2019 Tipo del documento: Article País de afiliación: Francia