Your browser doesn't support javascript.
loading
Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity.
Ruiz, Mario; Bodhicharla, Rakesh; Ståhlman, Marcus; Svensk, Emma; Busayavalasa, Kiran; Palmgren, Henrik; Ruhanen, Hanna; Boren, Jan; Pilon, Marc.
Afiliación
  • Ruiz M; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Bodhicharla R; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Ståhlman M; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Svensk E; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Busayavalasa K; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
  • Palmgren H; Metabolism BioScience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Ruhanen H; Helsinki University Lipidomics Unit, Helsinki Institute for Life Science, Helsinki, Finland.
  • Boren J; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
  • Pilon M; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
Elife ; 82019 11 26.
Article en En | MEDLINE | ID: mdl-31769755
ABSTRACT
The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Coenzima A Ligasas / Evolución Molecular / Proteínas de Caenorhabditis elegans / Proteínas de la Membrana Límite: Animals / Humans Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Coenzima A Ligasas / Evolución Molecular / Proteínas de Caenorhabditis elegans / Proteínas de la Membrana Límite: Animals / Humans Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Suecia