A multiwell applicator for conformal brachytherapy of superficial skin tumors: A simulation study.
Skin Res Technol
; 26(4): 537-541, 2020 Jul.
Article
en En
| MEDLINE
| ID: mdl-31883147
BACKGROUND: Brachytherapy of thin skin tumors using beta particles can protect underlying sensitive structures such as the bone because of the rapid dose falloff of this type of radiation in tissue. The current work describes a skin brachytherapy applicator, based on beta radiation, that can provide the needed cell-killing radiation dose matched to the shape of individual skin tumors. MATERIALS AND METHODS: The applicator and its template were fabricated using 3D printing technology. Any clinically approved beta-emitting isotope in the form of a radioactive gel could theoretically be used in this applicator. Monte Carlo simulations were employed to study the capability of the applicator in conforming dose distribution based on the shape of the tumor. Dose profile in the shallow depth, transverse dose profiles at different depths, and the percent depth dose from this applicator were calculated. The radioisotope of choice for our calculations was Yttrium-90 (Y-90). RESULTS: Using the proposed applicator, it is possible to create a desired dose profile matching the tumor surface shape. CONCLUSION: The short-range of the beta radiation, together with the dose conforming capability of the applicator, may lead to minimal interactions with the healthy tissue around the skin lesion.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Neoplasias Cutáneas
/
Braquiterapia
Tipo de estudio:
Health_economic_evaluation
Límite:
Humans
Idioma:
En
Revista:
Skin Res Technol
Asunto de la revista:
DERMATOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Alemania