Your browser doesn't support javascript.
loading
Entorhinal velocity signals reflect environmental geometry.
Munn, Robert G K; Mallory, Caitlin S; Hardcastle, Kiah; Chetkovich, Dane M; Giocomo, Lisa M.
Afiliación
  • Munn RGK; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA. munnr@stanford.edu.
  • Mallory CS; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
  • Hardcastle K; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
  • Chetkovich DM; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Giocomo LM; Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA. giocomo@stanford.edu.
Nat Neurosci ; 23(2): 239-251, 2020 02.
Article en En | MEDLINE | ID: mdl-31932764
ABSTRACT
The entorhinal cortex contains neurons that represent self-location, including grid cells that fire in periodic locations and velocity signals that encode running speed and head direction. Although the size and shape of the environment influence grid patterns, whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments remains unknown. Here we report that speed cells rescale after changes to the size and shape of the environment. Moreover, head direction cells reorganize in an experience-dependent manner to align with the axis of environmental change. A knockout mouse model allows dissociation of the coordination between cell types, with grid and speed cells, but not head direction cells, responding in concert to environmental change. These results point to malleability in the coding features of multiple entorhinal cell types and have implications for which cell types contribute to the velocity signal used by computational models of grid cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Percepción Espacial / Corteza Entorrinal / Navegación Espacial / Células de Red / Modelos Neurológicos Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Percepción Espacial / Corteza Entorrinal / Navegación Espacial / Células de Red / Modelos Neurológicos Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos