Multiway generalized canonical correlation analysis.
Biostatistics
; 23(1): 240-256, 2022 01 13.
Article
en En
| MEDLINE
| ID: mdl-32451525
Regularized generalized canonical correlation analysis (RGCCA) is a general multiblock data analysis framework that encompasses several important multivariate analysis methods such as principal component analysis, partial least squares regression, and several versions of generalized canonical correlation analysis. In this article, we extend RGCCA to the case where at least one block has a tensor structure. This method is called multiway generalized canonical correlation analysis (MGCCA). Convergence properties of the MGCCA algorithm are studied, and computation of higher-level components are discussed. The usefulness of MGCCA is shown on simulation and on the analysis of a cognitive study in human infants using electroencephalography (EEG).
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Electroencefalografía
/
Análisis de Correlación Canónica
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Biostatistics
Año:
2022
Tipo del documento:
Article
País de afiliación:
Francia