Synthesis and SERS application of gold and iron oxide functionalized bacterial cellulose nanocrystals (Au@Fe3O4@BCNCs).
Analyst
; 145(12): 4358-4368, 2020 Jun 15.
Article
en En
| MEDLINE
| ID: mdl-32500880
Bacterial cellulose nanocrystals (BCNCs) are biocompatible cellulose nanomaterials that can host guest nanoparticles to form hybrid nanocomposites with a wide range of applications. Herein, we report the synthesis of a hybrid nanocomposite that consists of plasmonic gold nanoparticles (AuNPs) and superparamagnetic iron oxide (Fe3O4) nanoparticles supported on BCNCs. As a proof of concept, the hybrid nanocomposites were employed to isolate and detect malachite green isothiocyanate (MGITC) via magnetic separation and surface-enhanced Raman scattering (SERS). Different initial gold precursor (Au3+) concentrations altered the size and morphology of the AuNPs formed on the nanocomposites. The use of 5 and 10 mM Au3+ led to a heterogenous mix of spherical and nanoplate AuNPs with increased SERS enhancements, as compared to the more uniform AuNPs formed using 1 mM Au3+. Rapid and sensitive detection of MGITC at concentrations as low as 10-10 M was achieved. The SERS intensity of the normalized Raman peak at 1175 cm-1 exhibited a log-linear relationship for MGITC concentrations between 2 × 10-10 and 2 × 10-5 M for Au@Fe3O4@BCNCs. These results suggest the potential of these hybrid nanocomposites for application in a broad range of analyte detection strategies.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Colorantes de Rosanilina
/
Celulosa
/
Nanocompuestos
/
Nanopartículas del Metal
/
Nanopartículas de Magnetita
/
Oro
Idioma:
En
Revista:
Analyst
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos