Your browser doesn't support javascript.
loading
Mathematical models for cell migration: a non-local perspective.
Chen, Li; Painter, Kevin; Surulescu, Christina; Zhigun, Anna.
Afiliación
  • Chen L; Mathematisches Institut, Universität Mannheim, A5 6, 68131 Mannheim, Germany.
  • Painter K; Department of Mathematics & Maxwell Institute, Heriot-Watt University, Edinburgh EH14 4AS, UK.
  • Surulescu C; Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 31, 67663 Kaiserslautern, Germany.
  • Zhigun A; School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, UK.
Philos Trans R Soc Lond B Biol Sci ; 375(1807): 20190379, 2020 09 14.
Article en En | MEDLINE | ID: mdl-32713297
We provide a review of recent advancements in non-local continuous models for migration, mainly from the perspective of its involvement in embryonal development and cancer invasion. Particular emphasis is placed on spatial non-locality occurring in advection terms, used to characterize a cell's motility bias according to its interactions with other cellular and acellular components in its vicinity (e.g. cell-cell and cell-tissue adhesions, non-local chemotaxis), but we also briefly address spatially non-local source terms. Following a short introduction and description of applications, we give a systematic classification of available PDE models with respect to the type of featured non-localities and review some of the mathematical challenges arising from such models, with a focus on analytical aspects. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Movimiento Celular / Modelos Biológicos Idioma: En Revista: Philos Trans R Soc Lond B Biol Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Movimiento Celular / Modelos Biológicos Idioma: En Revista: Philos Trans R Soc Lond B Biol Sci Año: 2020 Tipo del documento: Article País de afiliación: Alemania