Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies.
J Biomol Struct Dyn
; 39(15): 5551-5562, 2021 Sep.
Article
en En
| MEDLINE
| ID: mdl-32720578
Coronavirus disease (COVID-19), a life-threatening disease, is caused by SARS-CoV-2. The targeted therapeutics of small molecules helps the scientific community to fight against SARS-CoV-2. In this article, some oxazine substituted 9-anilinoacridines (A1-A48) was designed by docking, MM-GBSA and molecular dynamics (MD) simulation studies for their COVID-19 inhibitory activity. The docking of ligands A1-A48 against SARS-CoV-2 (PDB ID: 5R82) are performed by using Glide module, in silico ADMET screening by QikProp module, binding energy using Prime MM-GB/SA module, MD simulation by Desmond module and atomic charges were derived by Jaguar module of Schrodinger suit 2019-4. Compound A38 has the highest G-score (-7.83) when compared to all the standard compounds which are proposed for COVID-19 treatment such as ritonavir (-7.48), lopinavir (-6.94), nelfinavir (-5.93), hydroxychloroquine (-5.47) and mataquine (-5.37). Compounds A13, A23, A18, A7, A48, A46, A32, A20, A1 and A47 are significantly active against SARS-CoV-2 main protease when compared with hydroxychloroquine and mataquine. The residues GLN19, THR24, THR25, THR26, LEU27, HIE41, SER46, MET49, ASN119, ASN142, HIE164, MET165, ASP187, ARG188 and GLN189 of SARS-CoV-2 main protease play a crucial role in binding with ligands. The in silico ADMET properties of the molecules are within the recommended values. The binding free energy was calculated using PRIME MM-GB/SA studies. From the ligands A38, A13, A23, A18, A7, A48 and A46 with significant Glide scores may produce significant COVID-19 activity for further development. Compound A38 was subjected to MD simulation at 100 ns to study the dynamic behaviour of protein-ligand complex.Communicated by Ramaswamy H. Sarma.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Simulación de Dinámica Molecular
/
Tratamiento Farmacológico de COVID-19
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
J Biomol Struct Dyn
Año:
2021
Tipo del documento:
Article
País de afiliación:
India