Your browser doesn't support javascript.
loading
Antiferromagnetism, spin-glass state, H-T phase diagram, and inverse magnetocaloric effect in Co2RuO4.
Ghosh, Sayandeep; Joshi, Deep Chandra; Pramanik, Prativa; Jena, Suchit K; Pittala, Suresh; Sarkar, Tapati; Seehra, Mohindar S; Thota, Subhash.
Afiliación
  • Ghosh S; Department of Physics, Indian Institute of Technology, Guwahati-781039, Assam, India.
J Phys Condens Matter ; 32(48): 485806, 2020 Sep 09.
Article en En | MEDLINE | ID: mdl-32903218
ABSTRACT
Static and dynamic magnetic properties of normal spinel Co2RuO4 = (Co2+)[Formula see text] are reported based on our investigations of the temperature (T), magnetic field (H) and frequency (f) dependence of the ac-magnetic susceptibilities and dc-magnetization (M) covering the temperature range T = 2 K-400 K and H up to 90 kOe. These investigations show that Co2RuO4 exhibits an antiferromagnetic (AFM) transition at T N ∼ 15.2 K, along with a spin-glass state at slightly lower temperature (T SG) near 14.2 K. It is argued that T N is mainly governed by the ordering of the spins of Co2+ ions occupying the A-site, whereas the exchange interaction between the Co2+ ions on the A-site and randomly distributed Ru3+ on the B-site triggers the spin-glass phase, Co3+ ions on the B-site being in the low-spin non-magnetic state. Analysis of measurements of M (H, T) for T < T N are used to construct the H-T phase diagram showing that T SG shifts to lower T varying as H2/3.2 expected for spin-glass state whereas T N is nearly H-independent. For T > T N, analysis of the paramagnetic susceptibility (χ) vs. T data are fit to the modified Curie-Weiss law, χ = χ 0 + C/(T + θ), with χ 0 = 0.0015 emu mol-1Oe-1 yielding θ = 53 K and C = 2.16 emu-K mol-1Oe-1, the later yielding an effective magnetic moment µ eff = 4.16 µ B comparable to the expected value of µ eff = 4.24 µ B per Co2RuO4. Using T N, θ and high temperature series for χ, dominant exchange constant J 1/k B ∼ 6 K between the Co2+ on the A-sites is estimated. Analysis of the ac magnetic susceptibilities near T SG yields the dynamical critical exponent zν = 5.2 and microscopic spin relaxation time τ 0 ∼ 1.16 × 10-10 sec characteristic of cluster spin-glasses and the observed time-dependence of M(t) is supportive of the spin-glass state. Large M-H loop asymmetry at low temperatures with giant exchange bias effect (H EB ∼ 1.8 kOe) and coercivity (H C ∼ 7 kOe) for a field cooled sample further support the mixed magnetic phase nature of this interesting spinel. The negative magnetocaloric effect observed below T N is interpreted to be due to the AFM and SG ordering. It is argued that the observed change from positive MCE (magnetocaloric effect) for T > T N to inverse MCE for T < T N observed in Co2RuO4 (and reported previously in other systems also) is related to the change in sign of (∂M/∂T) vs. T data.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2020 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2020 Tipo del documento: Article País de afiliación: India