Your browser doesn't support javascript.
loading
Solvent-Dependent Assembly and Magnetic Relaxation Behaviors of [Cu4I3] Cluster-Based Lanthanide MOFs: Acting as Efficient Catalysts for Carbon Dioxide Conversion with Propargylic Alcohols.
Wu, Zhi-Lei; Gu, Ai-Ling; Gao, Ning; Cui, Hui-Ya; Wang, Wen-Min; Cui, Jian-Zhong.
Afiliación
  • Wu ZL; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.
  • Gu AL; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.
  • Gao N; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.
  • Cui HY; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.
  • Wang WM; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.
  • Cui JZ; Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P.R. China.
Inorg Chem ; 59(20): 15111-15119, 2020 Oct 19.
Article en En | MEDLINE | ID: mdl-32997940
ABSTRACT
Two structurally similar metal-organic frameworks (MOFs) [Dy2Cu4I3(IN)7(DMF)2]·DMF (1) and [Dy2Cu4I3(IN)7(DMA)2]·DMA (2) (HIN = isonicotinic acid) feathering different coordinated solvent molecules were successfully isolated by tuning the types of solvents in the reaction system. Structural tests indicate that 1 and 2 are both built from 1D Dy(III) chains and copper iodide clusters [Cu4I3], generating into three-dimensional frameworks with an open 1D channel along the a axis. 1 and 2 display extensive and excellent solvent stability. Magnetic studies of 1 and 2 indicate that they exhibit interesting solvent-dependent magnetization dynamics. Importantly, 1 and 2 can act as highly effective catalysts for the carboxylic cyclization of propargyl alcohols with carbon dioxide (CO2) under ambient operating conditions. Additionally, the substrate scope was further explored over compound 1 based on the optimal conditions, and it exhibits efficient cyclic carboxylation of various terminal propargylic alcohols with CO2. This research offers an effective approach for the solvent-guided synthesis of MOFs materials and also presents the great application value of MOFs in CO2 chemical conversion.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2020 Tipo del documento: Article