Your browser doesn't support javascript.
loading
Nonlocal and local models for taxis in cell migration: a rigorous limit procedure.
Eckardt, Maria; Painter, Kevin J; Surulescu, Christina; Zhigun, Anna.
Afiliación
  • Eckardt M; Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany.
  • Painter KJ; Department of Mathematics & Maxwell Institute, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK.
  • Surulescu C; Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany.
  • Zhigun A; School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK. A.Zhigun@qub.ac.uk.
J Math Biol ; 81(6-7): 1251-1298, 2020 12.
Article en En | MEDLINE | ID: mdl-33068155
A rigorous limit procedure is presented which links nonlocal models involving adhesion or nonlocal chemotaxis to their local counterparts featuring haptotaxis and classical chemotaxis, respectively. It relies on a novel reformulation of the involved nonlocalities in terms of integral operators applied directly to the gradients of signal-dependent quantities. The proposed approach handles both model types in a unified way and extends the previous mathematical framework to settings that allow for general solution-dependent coefficient functions. The previous forms of nonlocal operators are compared with the new ones introduced in this paper and the advantages of the latter are highlighted by concrete examples. Numerical simulations in 1D provide an illustration of some of the theoretical findings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Movimiento Celular / Quimiotaxis / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: J Math Biol Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Movimiento Celular / Quimiotaxis / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: J Math Biol Año: 2020 Tipo del documento: Article País de afiliación: Alemania