Your browser doesn't support javascript.
loading
Tropical peatlands and their contribution to the global carbon cycle and climate change.
Ribeiro, Kelly; Pacheco, Felipe S; Ferreira, José W; de Sousa-Neto, Eráclito R; Hastie, Adam; Krieger Filho, Guenther C; Alvalá, Plínio C; Forti, Maria C; Ometto, Jean P.
Afiliación
  • Ribeiro K; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
  • Pacheco FS; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
  • Ferreira JW; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
  • de Sousa-Neto ER; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
  • Hastie A; School of GeoSciences, University of Edinburgh, Edinburgh, UK.
  • Krieger Filho GC; Laboratory of Thermal and Environmental Engineering, Polytechnic School of the University of São Paulo, São Paulo, Brazil.
  • Alvalá PC; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
  • Forti MC; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
  • Ometto JP; Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil.
Glob Chang Biol ; 27(3): 489-505, 2021 Feb.
Article en En | MEDLINE | ID: mdl-33070397
Peatlands are carbon-rich ecosystems that cover 185-423 million hectares (Mha) of the earth's surface. The majority of the world's peatlands are in temperate and boreal zones, whereas tropical ones cover only a total area of 90-170 Mha. However, there are still considerable uncertainties in C stock estimates as well as a lack of information about depth, bulk density and carbon accumulation rates. The incomplete data are notable especially in tropical peatlands located in South America, which are estimated to have the largest area of peatlands in the tropical zone. This paper displays the current state of knowledge surrounding tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in the global climate, the impacts of direct human disturbances on carbon accumulation rates and greenhouse gas (GHG) emissions. Based on the new peat extension and depth data, we estimate that tropical peatlands store 152-288 Gt C, or about half of the global peatland emitted carbon. We discuss the knowledge gaps in research on distribution, depth, C stock and fluxes in these ecosystems which play an important role in the global carbon cycle and risk releasing large quantities of GHGs into the atmosphere (CO2 and CH4 ) when subjected to anthropogenic interferences (e.g., drainage and deforestation). Recent studies show that although climate change has an impact on the carbon fluxes of these ecosystems, the direct anthropogenic disturbance may play a greater role. The future of these systems as carbon sinks will depend on advancing current scientific knowledge and incorporating local understanding to support policies geared toward managing and conserving peatlands in vulnerable regions, such as the Amazon where recent records show increased forest fires and deforestation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cambio Climático / Ecosistema Límite: Humans País/Región como asunto: America do sul Idioma: En Revista: Glob Chang Biol Año: 2021 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cambio Climático / Ecosistema Límite: Humans País/Región como asunto: America do sul Idioma: En Revista: Glob Chang Biol Año: 2021 Tipo del documento: Article País de afiliación: Brasil