Your browser doesn't support javascript.
loading
Salinity controls soil microbial community structure and function in coastal estuarine wetlands.
Zhang, Guangliang; Bai, Junhong; Tebbe, Christoph C; Zhao, Qingqing; Jia, Jia; Wang, Wei; Wang, Xin; Yu, Lu.
Afiliación
  • Zhang G; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
  • Bai J; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
  • Tebbe CC; Thünen Institute of Biodiversity, Bundesallee 65, Braunschweig, 38116, Germany.
  • Zhao Q; Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
  • Jia J; Ecology Institute of Shandong Academy of Sciences, Jinan, 250103, China.
  • Wang W; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
  • Wang X; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
  • Yu L; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
Environ Microbiol ; 23(2): 1020-1037, 2021 02.
Article en En | MEDLINE | ID: mdl-33073448
ABSTRACT
Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microbiología del Suelo / Estuarios / Humedales / Salinidad / Microbiota Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microbiología del Suelo / Estuarios / Humedales / Salinidad / Microbiota Idioma: En Revista: Environ Microbiol Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2021 Tipo del documento: Article País de afiliación: China