Your browser doesn't support javascript.
loading
Scaffold-based selective SHP2 inhibitors design using core hopping, molecular docking, biological evaluation and molecular simulation.
Li, Wei-Ya; Ma, Ying; Li, Hao-Xin; Lu, Xin-Hua; Du, Shan; Ma, Yang-Chun; Zhou, Liang; Wang, Run-Ling.
Afiliación
  • Li WY; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
  • Ma Y; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China. Electronic address: maying@tmu.edu.cn.
  • Li HX; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
  • Lu XH; New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang 050015, Hebei, China.
  • Du S; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
  • Ma YC; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
  • Zhou L; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
  • Wang RL; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China. Electronic address: wangrunling@tmu.edu.cn.
Bioorg Chem ; 105: 104391, 2020 12.
Article en En | MEDLINE | ID: mdl-33113413
PTPN11 (coding the gene of SHP2), a classic non-receptor protein tyrosine phosphatase, is implicated in multiple cell signaling pathway. Abnormal activation of SHP2 has been shown to contribute to a variety of human diseases, including Juvenile myelomonocytic leukemia (JMML), Noonan syndrome and tumors. Thus, the SHP2 inhibitors have important therapeutic value. Here, based on the compound PubChem CID 8,478,960 (IC50 = 45.01 µM), a series of thiophene [2,3-d] pyrimidine derivatives (IC50 = 0.4-37.87 µM) were discovered as novel and efficient inhibitors of SHP2 through powerful "core hopping" and CDOCKER technology. Furthermore, the SHP2-PTP phosphatase activity assay indicated that Comp#5 (IC50 = 0.4 µM) was the most active SHP2 inhibitor. Subsequently, the effects of Comp#5 on the structure and function of SHP2 were investigated through molecular dynamics (MD) simulation and post-kinetic analysis. The result indicated that Comp#5 enhanced the interaction of residues THR357, ARG362, LYS366, PRO424, CYS459, SER460, ALA461, ILE463, ARG465, THR507 and GLN510 with the surrounding residues, improving the stability of the catalytic active region and the entrance of catalytic active region. In particular, the Comp#5 conjugated with residue ARG362, elevating the efficient and selectivity of SHP2 protein. The study here may pave the way for discovering the novel SHP2 inhibitors for suffering cancer patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pirimidinas / Tiofenos / Diseño de Fármacos / Inhibidores Enzimáticos / Proteína Tirosina Fosfatasa no Receptora Tipo 11 Límite: Humans Idioma: En Revista: Bioorg Chem Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pirimidinas / Tiofenos / Diseño de Fármacos / Inhibidores Enzimáticos / Proteína Tirosina Fosfatasa no Receptora Tipo 11 Límite: Humans Idioma: En Revista: Bioorg Chem Año: 2020 Tipo del documento: Article País de afiliación: China