Your browser doesn't support javascript.
loading
Single-cell transcriptome analysis reveals that maternal obesity affects DNA repair, histone methylation, and autophagy level in mouse embryos.
Pan, Meng-Hao; Zhu, Cheng-Cheng; Ju, Jia-Qian; Xu, Yi; Luo, Shi-Ming; Sun, Shao-Chen; Ou, Xiang-Hong.
Afiliación
  • Pan MH; Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
  • Zhu CC; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Ju JQ; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Xu Y; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Luo SM; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Sun SC; Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
  • Ou XH; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
J Cell Physiol ; 236(7): 4944-4953, 2021 07.
Article en En | MEDLINE | ID: mdl-33368268
ABSTRACT
Obesity causes many reproductive dysfunctions such as reduced conception, infertility, and early pregnancy loss, and this is largely due to the negative effects of obesity on oocyte and embryo quality. In the present study, we employed single-cell RNA transcriptome sequencing to investigate the potential causes for the maternal obesity effects on mouse embryos. Our results showed that the 4-cell and morula/blastocyst rates were all significantly decreased during embryo development in obese mice. Genome-wide analysis indicated that obesity altered the expression of more than 1100 genes in 2-cell embryos, including the genes which were related to the p53 signaling pathway and apoptosis. Further analysis showed that the expression of 47 genes related to DNA damage was changed, and a positive γH2A signal and the altered expression of Rad51 and Tex15 were observed in the obese embryos. Obesity also affected histone methylation, shown by the decrease of the H3K4-me2 level. Besides this, we observed the occurrence of autophagy and apoptosis in the embryos of obese mice. There were 42 genes that were related to autophagy/apoptosis that showed aberrant expression, and the positive LC3 signal and the decrease of Clec16a, Rraga, and Atg10 level were also observed. In summary, our study suggested that obesity affected early embryonic development by inducing DNA damage, aberrant histone methylation, and autophagy levels in mice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Autofagia / Metilación de ADN / Desarrollo Embrionario / Reparación del ADN / Obesidad Materna Límite: Animals / Pregnancy Idioma: En Revista: J Cell Physiol Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Autofagia / Metilación de ADN / Desarrollo Embrionario / Reparación del ADN / Obesidad Materna Límite: Animals / Pregnancy Idioma: En Revista: J Cell Physiol Año: 2021 Tipo del documento: Article País de afiliación: China