Your browser doesn't support javascript.
loading
Immune responses to azacytidine in animal models of inflammatory disorders: a systematic review.
Landman, Sija; van der Horst, Chiel; van Erp, Piet E J; Joosten, Irma; de Vries, Rob; Koenen, Hans J P M.
Afiliación
  • Landman S; Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • van der Horst C; Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • van Erp PEJ; Department of Dermatology, Radboudumc, Nijmegen, The Netherlands.
  • Joosten I; Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • de Vries R; Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands.
  • Koenen HJPM; Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands. hans.koenen@radboudumc.nl.
J Transl Med ; 19(1): 11, 2021 01 06.
Article en En | MEDLINE | ID: mdl-33407530
Inflammatory disorders like diabetes, systemic lupus erythematodes, inflammatory lung diseases, rheumatoid arthritis and multiple sclerosis, but also rejection of transplanted organs and GvHD, form a major burden of disease. Current classes of immune suppressive drugs to treat these disorders are never curative and side effects are common. Therefore there is a need for new drugs with improved and more targeted modes of action. Potential candidates are the DNA methyl transferase inhibitor 5-azacytidine (Aza) and its derivative 5-aza 2'deoxycitidine (DAC). Aza and DAC have been tested in several pre-clinical in vivo studies. In order to obtain an overview of disorders for which Aza and/or DAC can be a potential treatment, and to find out where information is lacking, we systematically reviewed pre-clinical animal studies assessing Aza or DAC as a potential therapy for distinct inflammatory disorders. Also, study quality and risk of bias was systematically assessed. In the 35 identified studies, we show that both Aza and DAC do not only seem to be able to alleviate a number of inflammatory disorders, but also prevent solid organ rejection and GvHD in in vivo pre-clinical animal models. Aza/DAC are known to upregulate FOXP3, a master transcription factor for Treg, in vitro. Seventeen studies described the effect on Treg, of which 16 studies showed an increase in Treg. Increasing Treg therefore seems to be a common mechanism in preventing inflammatory disorders by Aza/DAC. We also found, however, that many essential methodological details were poorly reported leading to an unclear risk of bias. Therefore, reported effects might be an overestimation of the true effect.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Azacitidina / Linfocitos T Reguladores Tipo de estudio: Prognostic_studies / Systematic_reviews Límite: Animals Idioma: En Revista: J Transl Med Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Azacitidina / Linfocitos T Reguladores Tipo de estudio: Prognostic_studies / Systematic_reviews Límite: Animals Idioma: En Revista: J Transl Med Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos