Your browser doesn't support javascript.
loading
Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain.
Tabares-Soto, Reinel; Arteaga-Arteaga, Harold Brayan; Mora-Rubio, Alejandro; Bravo-Ortíz, Mario Alejandro; Arias-Garzón, Daniel; Alzate Grisales, Jesús Alejandro; Burbano Jacome, Alejandro; Orozco-Arias, Simon; Isaza, Gustavo; Ramos Pollan, Raul.
Afiliación
  • Tabares-Soto R; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Arteaga-Arteaga HB; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Mora-Rubio A; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Bravo-Ortíz MA; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Arias-Garzón D; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Alzate Grisales JA; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Burbano Jacome A; Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Orozco-Arias S; Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
  • Isaza G; Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia.
  • Ramos Pollan R; Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia.
PeerJ Comput Sci ; 7: e451, 2021.
Article en En | MEDLINE | ID: mdl-33954236
In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images' detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks' stability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: PeerJ Comput Sci Año: 2021 Tipo del documento: Article País de afiliación: Colombia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: PeerJ Comput Sci Año: 2021 Tipo del documento: Article País de afiliación: Colombia