Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses.
EMBO J
; 40(15): e107121, 2021 08 02.
Article
en En
| MEDLINE
| ID: mdl-34013588
Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat-me" signal that initiates glia-mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal-specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well-known "eat-me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post-synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post-synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post-synapse elimination. Moreover, we found that phosphatidylserine is used for microglia-mediated pruning of inhibitory post-synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat-me" signal for inhibitory post-synapse elimination.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Fosfatidilserinas
/
Convulsiones
/
Sinapsis
/
Microglía
/
Tirosina Quinasa c-Mer
Límite:
Animals
Idioma:
En
Revista:
EMBO J
Año:
2021
Tipo del documento:
Article