Your browser doesn't support javascript.
loading
Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway.
Cui, Zhen-Yu; Wang, Ge; Zhang, Jing; Song, Jian; Jiang, Yu-Chen; Dou, Jia-Yi; Lian, Li-Hua; Nan, Ji-Xing; Wu, Yan-Ling.
Afiliación
  • Cui ZY; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Wang G; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Zhang J; Research and Development Center, Liaoning Shengjing Stem cell technology Co., Ltd, Shenyang, China.
  • Song J; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Jiang YC; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Dou JY; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Lian LH; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Nan JX; Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.
  • Wu YL; Clinical Research Centre, Affiliated Hospital of Yanbian University, Yanji, China.
Phytother Res ; 35(10): 5680-5693, 2021 Oct.
Article en En | MEDLINE | ID: mdl-34250656
ABSTRACT
The current study focused on the regulatory effects of parthenolide (PNL), a bioactive component derived from Chrysanthemum parthenium L., against hepatic fibrosis via regulating the crosstalk of toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) in activated hepatic stellate cells (HSCs). HSCs or Raw 264.7 macrophages were activated by TGF-ß or LPS for 1 hr, respectively, and then treated with PNL, CLI-095 (TLR4 inhibitor), or Niclosamide (STAT3 inhibitor) for the indicated time to detect the crosstalk of TLR4 and STAT3. PNL significantly decreased the expressions of α-SMA, collagen I, and the ratio of TIMP1 and MMP13 in TGF-ß-activated HSCs. PNL significantly reduced the releases of pro-inflammatory cytokines, including IL-6, IL-1ß, IL-1α, IL-18, and regulated signaling P2X7r/NLRP3 axis activation. PNL obviously induced the apoptosis of activated HSCs by regulating bcl-2 and caspases family. PNL significantly inhibited the expressions of TLR4 and STAT3, including their downstream signaling. PNL could regulate the crosstalk of TLR4 and STAT3, which were verified by their inhibitors in activated HSCs or Raw 264.7 cell macrophages. Thus, PNL could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines, and also induce the apoptosis of activated HSCs. In conclusion, PNL could bi-directionally inhibit TLR4 and STAT3 signaling pathway, suggesting that blocking the crosstalk of TLR4 and STAT3 might be the potential mechanism of PNL against hepatic fibrosis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factor de Transcripción STAT3 / Receptor Toll-Like 4 Idioma: En Revista: Phytother Res Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factor de Transcripción STAT3 / Receptor Toll-Like 4 Idioma: En Revista: Phytother Res Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2021 Tipo del documento: Article País de afiliación: China