Your browser doesn't support javascript.
loading
X-CNV: genome-wide prediction of the pathogenicity of copy number variations.
Zhang, Li; Shi, Jingru; Ouyang, Jian; Zhang, Riquan; Tao, Yiran; Yuan, Dongsheng; Lv, Chengkai; Wang, Ruiyuan; Ning, Baitang; Roberts, Ruth; Tong, Weida; Liu, Zhichao; Shi, Tieliu.
Afiliación
  • Zhang L; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Shi J; School of Statistics, Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, East China Normal University, Shanghai, 200062, China.
  • Ouyang J; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Zhang R; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Tao Y; School of Statistics, Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, East China Normal University, Shanghai, 200062, China.
  • Yuan D; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Lv C; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Wang R; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Ning B; Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
  • Roberts R; National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
  • Tong W; ApconiX Ltd, Alderley Park, Alderley Edge, SK10 4TG, UK.
  • Liu Z; University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
  • Shi T; National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA. weida.tong@fda.hhs.gov.
Genome Med ; 13(1): 132, 2021 08 18.
Article en En | MEDLINE | ID: mdl-34407882
BACKGROUND: Gene copy number variations (CNVs) contribute to genetic diversity and disease prevalence across populations. Substantial efforts have been made to decipher the relationship between CNVs and pathogenesis but with limited success. RESULTS: We have developed a novel computational framework X-CNV ( www.unimd.org/XCNV ), to predict the pathogenicity of CNVs by integrating more than 30 informative features such as allele frequency (AF), CNV length, CNV type, and some deleterious scores. Notably, over 14 million CNVs across various ethnic groups, covering nearly 93% of the human genome, were unified to calculate the AF. X-CNV, which yielded area under curve (AUC) values of 0.96 and 0.94 in training and validation sets, was demonstrated to outperform other available tools in terms of CNV pathogenicity prediction. A meta-voting prediction (MVP) score was developed to quantitively measure the pathogenic effect, which is based on the probabilistic value generated from the XGBoost algorithm. The proposed MVP score demonstrated a high discriminative power in determining pathogenetic CNVs for inherited traits/diseases in different ethnic groups. CONCLUSIONS: The ability of the X-CNV framework to quantitatively prioritize functional, deleterious, and disease-causing CNV on a genome-wide basis outperformed current CNV-annotation tools and will have broad utility in population genetics, disease-association studies, and diagnostic screening.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Biología Computacional / Predisposición Genética a la Enfermedad / Estudio de Asociación del Genoma Completo / Variaciones en el Número de Copia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Biología Computacional / Predisposición Genética a la Enfermedad / Estudio de Asociación del Genoma Completo / Variaciones en el Número de Copia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2021 Tipo del documento: Article País de afiliación: China