Regio- and Stereoselective Synthesis of Multi-Alkylated Allylic Boronates through Three-Component Coupling Reactions between Allenes, Alkyl Halides, and a Diboron Reagent.
J Am Chem Soc
; 143(34): 13865-13877, 2021 09 01.
Article
en En
| MEDLINE
| ID: mdl-34424698
Multisubstituted allylic boronates are attractive and valuable precursors for the rapid and stereoselective construction of densely substituted carbon skeletons. Herein, we report the first synthetic approach for differentially 2,3,3-trialkyl-substituted allylic boronates that contain a stereodefined tetrasubstituted alkene structure. Copper(I)-catalyzed regio- and stereoselective three-component coupling reactions between gem-dialkylallenes, alkyl halides, and a diboron reagent afforded sterically congested allylic boronates. The allylboration of aldehydes diastereoselectively furnished the corresponding homoallylic alcohols that bear a quaternary carbon. A computational study revealed that the selectivity-determining mechanism was correlated to the coordination of a boryl copper(I) species to the allene substrate as well as the borylcupration step.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2021
Tipo del documento:
Article
País de afiliación:
Japón