Your browser doesn't support javascript.
loading
Reconfigurable 2D WSe2 -Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity.
Ding, Guanglong; Yang, Baidong; Chen, Ruo-Si; Mo, Wen-Ai; Zhou, Kui; Liu, Yang; Shang, Gang; Zhai, Yongbiao; Han, Su-Ting; Zhou, Ye.
Afiliación
  • Ding G; Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Yang B; College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Chen RS; Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Mo WA; College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Zhou K; Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Liu Y; College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Shang G; Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Zhai Y; Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Han ST; Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
  • Zhou Y; Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China.
Small ; 17(41): e2103175, 2021 10.
Article en En | MEDLINE | ID: mdl-34528382
The mimicking of both homosynaptic and heterosynaptic plasticity using a high-performance synaptic device is important for developing human-brain-like neuromorphic computing systems to overcome the ever-increasing challenges caused by the conventional von Neumann architecture. However, the commonly used synaptic devices (e.g., memristors and transistors) require an extra modulate terminal to mimic heterosynaptic plasticity, and their capability of synaptic plasticity simulation is limited by the low weight adjustability. In this study, a WSe2 -based memtransistor for mimicking both homosynaptic and heterosynaptic plasticity is fabricated. By applying spikes on either the drain or gate terminal, the memtransistor can mimic common homosynaptic plasticity, including spiking rate dependent plasticity, paired pulse facilitation/depression, synaptic potentiation/depression, and filtering. Benefitting from the multi-terminal input and high adjustability, the resistance state number and linearity of the memtransistor can be improved by optimizing the conditions of the two inputs. Moreover, the device can successfully mimic heterosynaptic plasticity without introducing an extra terminal and can simultaneously offer versatile reconfigurability of excitatory and inhibitory plasticity. These highly adjustable and reconfigurable characteristics offer memtransistors more freedom of choice for tuning synaptic weight, optimizing circuit design, and building artificial neuromorphic computing systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sinapsis / Plasticidad Neuronal Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sinapsis / Plasticidad Neuronal Límite: Humans Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article