Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
Mol Cell
; 81(18): 3691-3707, 2021 09 16.
Article
en En
| MEDLINE
| ID: mdl-34547234
Redox reactions are intrinsically linked to energy metabolism. Therefore, redox processes are indispensable for organismal physiology and life itself. The term reactive oxygen species (ROS) describes a set of distinct molecular oxygen derivatives produced during normal aerobic metabolism. Multiple ROS-generating and ROS-eliminating systems actively maintain the intracellular redox state, which serves to mediate redox signaling and regulate cellular functions. ROS, in particular hydrogen peroxide (H2O2), are able to reversibly oxidize critical, redox-sensitive cysteine residues on target proteins. These oxidative post-translational modifications (PTMs) can control the biological activity of numerous enzymes and transcription factors (TFs), as well as their cellular localization or interactions with binding partners. In this review, we describe the diverse roles of redox regulation in the context of physiological cellular metabolism and provide insights into the pathophysiology of diseases when redox homeostasis is dysregulated.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Transducción de Señal
/
Especies Reactivas de Oxígeno
/
Metabolismo Energético
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Mol Cell
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2021
Tipo del documento:
Article