Your browser doesn't support javascript.
loading
Comparative cellular analysis of motor cortex in human, marmoset and mouse.
Bakken, Trygve E; Jorstad, Nikolas L; Hu, Qiwen; Lake, Blue B; Tian, Wei; Kalmbach, Brian E; Crow, Megan; Hodge, Rebecca D; Krienen, Fenna M; Sorensen, Staci A; Eggermont, Jeroen; Yao, Zizhen; Aevermann, Brian D; Aldridge, Andrew I; Bartlett, Anna; Bertagnolli, Darren; Casper, Tamara; Castanon, Rosa G; Crichton, Kirsten; Daigle, Tanya L; Dalley, Rachel; Dee, Nick; Dembrow, Nikolai; Diep, Dinh; Ding, Song-Lin; Dong, Weixiu; Fang, Rongxin; Fischer, Stephan; Goldman, Melissa; Goldy, Jeff; Graybuck, Lucas T; Herb, Brian R; Hou, Xiaomeng; Kancherla, Jayaram; Kroll, Matthew; Lathia, Kanan; van Lew, Baldur; Li, Yang Eric; Liu, Christine S; Liu, Hanqing; Lucero, Jacinta D; Mahurkar, Anup; McMillen, Delissa; Miller, Jeremy A; Moussa, Marmar; Nery, Joseph R; Nicovich, Philip R; Niu, Sheng-Yong; Orvis, Joshua; Osteen, Julia K.
Afiliación
  • Bakken TE; Allen Institute for Brain Science, Seattle, WA, USA. trygveb@alleninstitute.org.
  • Jorstad NL; Allen Institute for Brain Science, Seattle, WA, USA.
  • Hu Q; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  • Lake BB; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Tian W; The Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Kalmbach BE; Allen Institute for Brain Science, Seattle, WA, USA.
  • Crow M; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
  • Hodge RD; Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  • Krienen FM; Allen Institute for Brain Science, Seattle, WA, USA.
  • Sorensen SA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
  • Eggermont J; Allen Institute for Brain Science, Seattle, WA, USA.
  • Yao Z; LKEB, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
  • Aevermann BD; Allen Institute for Brain Science, Seattle, WA, USA.
  • Aldridge AI; J. Craig Venter Institute, La Jolla, CA, USA.
  • Bartlett A; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Bertagnolli D; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Casper T; Allen Institute for Brain Science, Seattle, WA, USA.
  • Castanon RG; Allen Institute for Brain Science, Seattle, WA, USA.
  • Crichton K; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Daigle TL; Allen Institute for Brain Science, Seattle, WA, USA.
  • Dalley R; Allen Institute for Brain Science, Seattle, WA, USA.
  • Dee N; Allen Institute for Brain Science, Seattle, WA, USA.
  • Dembrow N; Allen Institute for Brain Science, Seattle, WA, USA.
  • Diep D; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
  • Ding SL; Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA, USA.
  • Dong W; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Fang R; Allen Institute for Brain Science, Seattle, WA, USA.
  • Fischer S; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
  • Goldman M; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
  • Goldy J; Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  • Graybuck LT; Department of Genetics, Harvard Medical School, Boston, MA, USA.
  • Herb BR; Allen Institute for Brain Science, Seattle, WA, USA.
  • Hou X; Allen Institute for Brain Science, Seattle, WA, USA.
  • Kancherla J; Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
  • Kroll M; Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
  • Lathia K; Department of Computer Science, University of Maryland College Park, College Park, MD, USA.
  • van Lew B; Allen Institute for Brain Science, Seattle, WA, USA.
  • Li YE; Allen Institute for Brain Science, Seattle, WA, USA.
  • Liu CS; LKEB, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
  • Liu H; Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
  • Lucero JD; Ludwig Institute for Cancer Research, La Jolla, CA, USA.
  • Mahurkar A; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
  • McMillen D; Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
  • Miller JA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Moussa M; The Salk Institute for Biological Studies, La Jolla, CA, USA.
  • Nery JR; Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
  • Nicovich PR; Allen Institute for Brain Science, Seattle, WA, USA.
  • Niu SY; Allen Institute for Brain Science, Seattle, WA, USA.
  • Orvis J; University of Connecticut, Storrs, CT, USA.
  • Osteen JK; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
Nature ; 598(7879): 111-119, 2021 10.
Article en En | MEDLINE | ID: mdl-34616062
The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / Corteza Motora / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Nature Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / Corteza Motora / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Nature Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos