Your browser doesn't support javascript.
loading
The BrAID study protocol: integration of machine learning and transcriptomics for brugada syndrome recognition.
Morales, M A; Piacenti, M; Nesti, M; Solarino, G; Pieragnoli, P; Zucchelli, G; Del Ry, S; Cabiati, M; Vozzi, F.
Afiliación
  • Morales MA; CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
  • Piacenti M; Fondazione Toscana Gabriele Monasterio, Via G. Moruzzi 1, Pisa, Italy.
  • Nesti M; U.O.C. Cardiologia Ospedale San Donato, Via Pietro Nenni 20, Arezzo, Italy.
  • Solarino G; Azienda Usl Toscana Nord Ovest U.O.C. Cardiologia Ospedale Versilia, SS1 Via Aurelia 335, Lido di Camaiore, Italy.
  • Pieragnoli P; Azienda Ospedaliera Universitaria Careggi SOD Aritmologia, Largo Brambilla, 3, Firenze, Italy.
  • Zucchelli G; Azienda Ospedaliero Universitaria Pisana Cardiologia 2 U.O.C. Cisanello, Via Paradisa, 2, Pisa, Italy.
  • Del Ry S; CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
  • Cabiati M; CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
  • Vozzi F; CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy. vozzi@ifc.cnr.it.
BMC Cardiovasc Disord ; 21(1): 494, 2021 10 13.
Article en En | MEDLINE | ID: mdl-34645390
BACKGROUND: Type 1 Brugada syndrome (BrS) is a hereditary arrhythmogenic disease showing peculiar electrocardiographic (ECG) patterns, characterized by ST-segment elevation in the right precordial leads, and risk of Sudden Cardiac Death (SCD). Furthermore, although various ECG patterns are described in the literature, different individual ECG may show high-grade variability, making the diagnosis problematic. The study aims to develop an innovative system for an accurate diagnosis of Type 1 BrS based on ECG pattern recognition by Machine Learning (ML) models and blood markers analysis trough transcriptomic techniques. METHODS: The study is structured in 3 parts: (a) a retrospective study, with the first cohort of 300 anonymized ECG obtained in already diagnosed Type 1 BrS (75 spontaneous, 150 suspected) and 75 from control patients, which will be processed by ML analysis for pattern recognition; (b) a prospective study, with a cohort of 11 patients with spontaneous Type 1 BrS, 11 with drug-induced Type 1 BrS, 11 suspected BrS but negative to Na + channel blockers administration, and 11 controls, enrolled for ECG ML analysis and blood collection for transcriptomics and microvesicles analysis; (c) a validation study, with the third cohort of 100 patients (35 spontaneous and 35 drug-induced BrS, 30 controls) for ML algorithm and biomarkers testing. DISCUSSION: The BrAID system will help clinicians improve the diagnosis of Type 1 BrS by using multiple information, reducing the time between ECG recording and final diagnosis, integrating clinical, biochemical and ECG information thus favoring a more effective use of available resources. Trial registration Clinical Trial.gov, NCT04641585. Registered 17 November 2020, https://clinicaltrials.gov/ct2/show/NCT04641585.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proyectos de Investigación / Procesamiento de Señales Asistido por Computador / Diagnóstico por Computador / Perfilación de la Expresión Génica / Electrocardiografía / Síndrome de Brugada / Transcriptoma / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: BMC Cardiovasc Disord Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proyectos de Investigación / Procesamiento de Señales Asistido por Computador / Diagnóstico por Computador / Perfilación de la Expresión Génica / Electrocardiografía / Síndrome de Brugada / Transcriptoma / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: BMC Cardiovasc Disord Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia