The BrAID study protocol: integration of machine learning and transcriptomics for brugada syndrome recognition.
BMC Cardiovasc Disord
; 21(1): 494, 2021 10 13.
Article
en En
| MEDLINE
| ID: mdl-34645390
BACKGROUND: Type 1 Brugada syndrome (BrS) is a hereditary arrhythmogenic disease showing peculiar electrocardiographic (ECG) patterns, characterized by ST-segment elevation in the right precordial leads, and risk of Sudden Cardiac Death (SCD). Furthermore, although various ECG patterns are described in the literature, different individual ECG may show high-grade variability, making the diagnosis problematic. The study aims to develop an innovative system for an accurate diagnosis of Type 1 BrS based on ECG pattern recognition by Machine Learning (ML) models and blood markers analysis trough transcriptomic techniques. METHODS: The study is structured in 3 parts: (a) a retrospective study, with the first cohort of 300 anonymized ECG obtained in already diagnosed Type 1 BrS (75 spontaneous, 150 suspected) and 75 from control patients, which will be processed by ML analysis for pattern recognition; (b) a prospective study, with a cohort of 11 patients with spontaneous Type 1 BrS, 11 with drug-induced Type 1 BrS, 11 suspected BrS but negative to Na + channel blockers administration, and 11 controls, enrolled for ECG ML analysis and blood collection for transcriptomics and microvesicles analysis; (c) a validation study, with the third cohort of 100 patients (35 spontaneous and 35 drug-induced BrS, 30 controls) for ML algorithm and biomarkers testing. DISCUSSION: The BrAID system will help clinicians improve the diagnosis of Type 1 BrS by using multiple information, reducing the time between ECG recording and final diagnosis, integrating clinical, biochemical and ECG information thus favoring a more effective use of available resources. Trial registration Clinical Trial.gov, NCT04641585. Registered 17 November 2020, https://clinicaltrials.gov/ct2/show/NCT04641585.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Proyectos de Investigación
/
Procesamiento de Señales Asistido por Computador
/
Diagnóstico por Computador
/
Perfilación de la Expresión Génica
/
Electrocardiografía
/
Síndrome de Brugada
/
Transcriptoma
/
Aprendizaje Automático
Tipo de estudio:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
/
Qualitative_research
/
Risk_factors_studies
Límite:
Humans
País/Región como asunto:
Europa
Idioma:
En
Revista:
BMC Cardiovasc Disord
Asunto de la revista:
ANGIOLOGIA
/
CARDIOLOGIA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Italia