Your browser doesn't support javascript.
loading
Information bounds in determining the 3D orientation of a single emitter or scatterer using point-detector-based division-of-amplitude polarimetry.
Beckwith, Joseph S; Yang, Haw.
Afiliación
  • Beckwith JS; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
  • Yang H; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys ; 155(14): 144110, 2021 Oct 14.
Article en En | MEDLINE | ID: mdl-34654316
ABSTRACT
Determining the 3D orientation of a single molecule or particle, encoded in its polar and azimuthal angles, is of interest for a variety of fields, being relevant to a range of questions in elementary chemical reactivity, biomolecular motors, and nanorheology. A popular experimental method, known as division-of-amplitude polarimetry, for determining the real-time orientation of a single particle is to split the emitted/scattered light into multiple polarizations and to measure the light intensity using point detectors at these polarizations during a time interval Δt. Here, we derive the Cramér-Rao lower bounds for this method from the perspective of information theory in the cases of utilizing a chromophore or a scattering particle as a 3D orientation probe. Such Cramér-Rao lower bounds are new for using this experimental method to measure the full 3D orientation in both the scattering case and the fluorescence case. These results show that, for a scatterer, the information content of one photon is 1.16 deg-2 in the polar and 58.71 deg-2 in the azimuthal angles, respectively. For a chromophore, the information content of one photon is 2.54 deg-2 in the polar and 80.29 deg-2 in the azimuthal angles. In addition, the Cramér-Rao lower bound scales with the square root of the total signal photons. To determine orientation to an uncertainty of one degree requires 7.40 × 104 and 2.34 × 103 photons for the polar and the azimuthal angles, respectively, for fluorescence, whereas it takes 1.62 × 105 and 3.20 × 103 photons for scattering. This work provides experimentalists new guidelines by which future experiments can be designed and interpreted.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos