Your browser doesn't support javascript.
loading
Architecture of HAP-anammox granules contributed to high capacity and robustness of nitrogen removal under 7°C.
Song, Ying; Lin, Lan; Ni, Jialing; Ma, Haiyuan; Qi, Wei-Kang; Li, Yu-You.
Afiliación
  • Song Y; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
  • Lin L; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
  • Ni J; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
  • Ma H; College of Environment and Ecology, ChongQing University, Chongqing, 40045, China.
  • Qi WK; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
  • Li YY; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan. Electro
Water Res ; 206: 117764, 2021 Nov 01.
Article en En | MEDLINE | ID: mdl-34688094
ABSTRACT
The anaerobic ammonium oxidation (anammox) process is an autotrophic nitrogen removal process with great potential as a cost-effective and highly efficient technology in the wastewater treatment field. The main challenges yet to be overcome in this new frontier technology are operating at lower temperatures and achieving a high and stable nitrogen removal efficiency. In this study, an up-flow expanded bed reactor with hydroxyapatite (HAP)-anammox granules was operated for more than 200 days at 7°C. The nitrogen loading rate (NLR) was improved from 1.0 g-N/L/d to 3.6 g-N/L/d, together with a high-level nitrogen removal efficiency of 84-92%, which is the highest to date at extremely low temperatures in a continuous experiment. Candidatus Kuenenia was revealed to be the only dominant anammox genus, with a relative abundance of 35.3-37.5%. The optimal operational temperature was around 35°C and the apparent activation energy (Ea) was calculated as 78.37 kJ/mol. The three-layers architecture and architectural evolution of HAP-anammox granules into HAP-cores and peeling biofilms with outstanding settling performance were characterized. Under 7°C, the high capacity of nitrogen removal with robust removal efficiency using HAP-anammox granules was achieved.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos de Amonio / Nitrógeno Idioma: En Revista: Water Res Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos de Amonio / Nitrógeno Idioma: En Revista: Water Res Año: 2021 Tipo del documento: Article País de afiliación: Japón